Advanced Math & Problem Solving

Course Outline

I. Review of determining areas
II. Review of determining air velocity
III. Review of determining quantity of air
IV. Review of perimeters (square & circle)
V. Determining perimeter of trapezoids
VI. Determining rubbing surfaces
VII. Coefficient of friction
VIII. Inches of water gauge
IX. Total ventilating pressure
X. Unit ventilating pressure
XI. Total resistance of an airway
XII. Units of work
XIII. Horsepower
XIV. Depth of Shaft- Atmospheric air pressure
XV. Equivalent orifice
XVI. Water calculations
XVII. Barrier Pillar formula & calculations
Formula Terms & Equations

a = sectional area of airway measured in square feet (ft.²)

- **Rectangle or square**……..height x width = area

- **Trapezoid** …………………top width + bottom width \(\frac{x}{2} \) x height = area

- **Circle**……………………..\(\pi \times r^2 \) = area

 Note: \(\pi = 3.1416 \)

v = velocity of air current measured in feet per minute (fpm)

- **Smoke tube**………………..distance \(\frac{distance}{decimal \ time} \)

- **Anemometer**………………

- **Magnehelic**………………..V.P. = 4003 \(\times \sqrt{i} \)
 (Velocity Pressure)
 note: see page 6

q = quantity of air, in cubic feet per minute (cfm)

- **Quantity of air (cfm)**……………….. q = a x v

- **Velocity of air**……………….. \(\frac{v = q}{a} \) or \(\frac{v}{a} \)

- **Area (when velocity and quantity are known)**………….. a = q \(\frac{v}{A} \)

l = length of airway measured in linear feet
\(o \) = perimeter of airway measured in linear feet

- **Rectangle or Square**……….. Top width + bottom width + side 1 + side 2
- Circle…………………………… \(\pi \times \text{diameter} \)
- Trapezoid……………………… \(Z = \sqrt{X^2 + Y^2} \)

(Pythagoras’s Theorem) to find side Then: Top width + bottom width + side 1 + side 2

\[\text{Note: see page 5} \]

\(s \) = rubbing surface measured in square feet (\(\text{ft}^2 \))

- **Rubbing surface**…………………………… \(s = lo \)

\(k \) = coefficient of friction,
(The resistance of one square foot of rubbing surface to an air current with a velocity of one foot per minute) \(0.0000002\)

\(i \) = inches of water gauge; also given as w.g.

- **Water gauge**…………………………………… \(i = \frac{p}{5.2} \)

\(P \) = total ventilating pressure, in pounds (lbs.)

- **Total pressure**…………………………………… \(P = pa \)

\(p \) = unit ventilating pressure, in pounds per square feet (\(\text{lb./ft.}^2 \))

- **Unit pressure, lbs. per sq ft**……………………\(p = \frac{ksv^2}{a} \)

\(R \) = total resistance of an airway, in pounds; equals \(P \)

- **Resistance, lbs**…………………………………… \(R = pa = P \)
\(u = \text{units of work, in foot-pounds per minute} \)

- **Units of power, ft lbs per min.** \(u = ksv^3 \)
 (The work performed each minute by a current of air with a velocity of a certain number of feet per minute.)

\(h = \text{horsepower; also given as h.p. or H.P.} \)

 (One horsepower can move: 33,000 lbs. One foot vertically in one minute
 : 330 lbs. 100 feet vertically in one minute
 : 33 lbs. 1,000 feet vertically in one minute)

\[h = \frac{u}{33,000} \]

 1 horsepower = 746 watts/electricity

 1 horsepower = .746 kilowatts/electricity

\(Hg = \text{inches of mercury} \)

- **Atmospheric air pressure**
 (Depth of Shaft)

\[1 \text{ (mercury) inch} = 876 \text{ feet in air column} \]

\(\text{Barometric pressure} \)

\[\text{Equivalent orifice} = 0.0004 \times Q_{\text{New}} \times \frac{1}{\sqrt{i}} \]

Water (gallons)
1 cubic foot = 7.5 gallons

Water (weight)
1 cubic foot = 62.5 lbs.

Temperature conversion

 Fahrenheit to Centigrade
\[C^\circ = 32 - F^\circ \text{ temp.} \times 0.555 \]

 Centigrade to Fahrenheit
\[F^\circ = C^\circ \times 1.8 + 32 \]

Barrier Pillar Formula

\[2 \times \left(10' + (2' \text{ for every foot or part of a foot of seam height}) + (5' \text{ for every } 100' \text{ or part of } 100' \text{ of cover}) \right) \]
TRAPEZOID

![Diagram of a trapezoid with labels: Top, Bottom, Z, Height = Y, and X.]

PYTHAGORAS’S THEOREM

\[Z = \sqrt{X^2 + Y^2} \]

This formula is used to find the angle side of a right triangle. The height is given and the top and bottom portion of the trapezoid are given.

To find “X”, use the following:

\[\frac{\text{BOTTOM - TOP}}{2} = X \]

Complete by finding the perimeter by adding the top + the bottom + the right side + the left side.
Taking an air reading using a Magnehelic and a Pitot tube: When high velocity air movement will damage the anemometer.

![Ventilation Tube Diagram]

Take magnehelic reading (inches of water), and then use the formula:

\[4003 \times \sqrt{i.} = \text{V.P. or ventilation pressure, which is in fpm} \]
FORMULAS FOR METHANE EVALUATION

\[Q_G = \text{Quantity of Methane Gas (cfm)} \quad Q_R = \text{Quantity of Return Air (cfm)} \]

\[%_G = \text{Percentage of Gas (methane detector reading)} \quad Q_r = \text{Quantity of Intake Air (cfm)} \]

METHANOMETER CONVERSION (2 decimal places)

(detector) \quad (decimal equivalent)

\[.5\% \text{ of methane} = .005 \]

\[1.0\% \text{ of methane} = .01 \]

For quantity of methane in a 24 hour period:

\[Q_G \times 60 \text{ (minutes)} \times 24 \text{ (hours)} = \text{CF/CH}_4/24 \]

The formula to find the quantity of gas when the percent of gas and the quantity of return air are known:

\[Q_G = Q_R \times %_G \]

The formula to find the percent of gas when the quantity of gas and the quantity of return air are known:

\[%_G = \frac{Q_G}{Q_R} \]

The formula to find the quantity of return air when the quantity of gas and the percent of gas are known:

\[Q_R = \frac{Q_G}{%_G} \]

The formula to find the quantity of return air when the quantity of gas and quantity of intake air are known:

\[Q_R = Q_G + Q_r \]

Dilution Formula

The formula to find the amount of **air to add** to reduce the percent of gas in an air current:

\[\text{Air to add} = \frac{Q_G}{%_G(\text{new gas reading})} - Q_R \]

To find the **total volume** of air, do not subtract the return air volume.