

What do I need to know?

- What gases make up fresh air
- What are the hazards of mine gases
- Specific Gravity of each gas
- Origin of mine gases
- Explosive range
- Exposure limits
- What detection device(s) do I use

Category of Gases

- Noxious Asphixiant due to a lack of oxygen.
- Toxic Poison, either long or short term exposure.

- Specific Gravity: The combinations of gases that make up air is what other gases are compared with. Air is considered to have a specific gravity of 1.0
- Temperature: Cold gases will diffuse slowly, hot gases will diffuse quickly.
- **Graham's Law:** The rate of diffusion, the lower the specific gravity, the faster it will diffuse.
- Barometric Pressure: The lower the pressure, the faster a gas will diffuse.
 - **Solubility:** The ability to dissolve in water.

Exposure Limits

- Threshold Limit Value (TLV)
 The allowable amount of gas
 exposure for an 8 hour day for 5
 days a week without harmful
 effects.
- Short Term Exposure Limit (STEL) The allowable amount of gas exposure for 15 minuets.

Measurement of Gases

Parts Per Million (PPM)- The most accurate measurement of a contaminant in the atmosphere.

(4)

PERCENT	PPM
1.0	10,000
.1	1,000
.01	100
.001	10
.0001	1

Mine Gases & their Components

AIR

- Chemical Formula: None
- Specific Gravity: 1.000
- Source: Atmosphere
- Characteristics: No color, odor, or taste
- Pure dry air at sea level contains the following:

Oxygen	20.94 %
- Nitrogen	78.09 %
- Argon	0.94%
 Carbon Dioxide 	0.03%

Oxygen

- Specific Gravity: 1.105
 - Chemical Formula: O₂
 - Oxygen will not burn or explode
 - Source: Atmosphere
 - Characteristics: No color, odor or taste
 - Note: When another gas is introduced into the atmosphere of an artificial environment, such as a mine, tunnel or man holes, oxygen can be displaced causing asphyxiation.

Effect

Breathing Easiest

Minimum required by law

Breathing faster & deeper

Flame safety lamp will extinguish

Dizziness, buzzing noise, rapid pulse, headache, blurred vision

Unconsciousness

Breathing stops, cardiac arrest

Noxious Gases (Explosive)

Methane

- Chemical Formula: CH₄
- Specific gravity: 0.555
- Needs 12.5% O_2 to ignite
- Explosive Range: 5-15%
- Ignition Temperature: 1100°-1300° F
- Source: Carbon products decaying in anoxic environment
- Characteristics: No color, odor or taste
- Detection method: Methane detector, Flame safety lamp, Chemical analysis

Acetylene

- Chemical Formula: C₂H₂
- Specific Gravity: 0.9107
- Explosive Range: 2.4-83%
- Ignition Temperature: 581°F
- Source: Methane heated in a low oxygen atmosphere
- Odor: Garlic
- Will auto-ignite when over pressurized

- Nitrogen
 - Chemical formula: N₂
 - Specific Gravity: 0.967
 - -**TLV**: 810,000 PPM
 - Source: Atmosphere, released from coal seam
 - Characteristics: No color, odor, or taste

Chemical Formula: CO₂

– Specific Gravity: 1.529

- **TLV**: 5000 PPM

– STEL: 15,000 PPM

 Source: Product of complete combust slow oxidation of carbon products, breathing

 Characteristics: No color or odor, acidic taste above 10%

Toxic Gases(Explosive)

Carbon Monoxide

- Chemical Formula: CO
- Specific Gravity: 0.967
- Needs 6% O₂ to ignite
- Ignition Temperature: 1100°F
- Explosive Range: 12.5-74%
- TLV: 50 ppm
- **STEL:** 400 PPM
- Source: Incomplete combustion, diesels, gasoline engines
- Characteristics: No color, odor, or taste
- Effect on the body: 300 times more attracted to hemoglobin than oxygen.

Toxic Gases (Explosive) con't.

Hydrogen Sulfide

- Chemical Formula: H₂S
- Specific Gravity: 1.191
- Ignition Temperature: 700°F
- **TLV:** 10 ppm
- STEL: 15 PPM
- Source: Sulfur dissolving in water in a poorly ventilated area, rotting mine timbers
- Characteristics: Colorless, sweet taste, rotten egg smell
- Effect on the body: Paralysis of respiratory system

Toxic Gases (Non-Explosive)

Nitrogen Dioxide

- Chemical Formula: NO₂
- Specific Gravity: 1.589
- TLV: 5 PPM
- STEL: 10 PPM
- Source: Explosives after-product, diesel exhaust, welding
- Characteristics: Burnt powder odor, reddish brown in high concentrations
- Effect on the body: Forms nitric acid in lungs causing pulmonary edema

Toxic gases(con't)

Sulfur Dioxide

- Chemical Formula: SO₂
- Specific Gravity: 2.264
- Source: Burning of sulfide ores, diesel exhaust, gob fires
- TLV: 5 ppm
- STEL: 10 PPM
- Characteristics: Heavy sulfur odor
- Effect on the body: Same as nitrogen dioxide

Smoke

- Tiny particles of solid and liquid matter suspended in air as a result of combustion
- Diesel Particulate Matter
- By-products of burning belts
- Carbon materials
- Usually noxious and toxic gases are present
- Can be carcinogen(cancer causing)

Mine damps

- The word damp is a derivative of the German word "damf" which means vapor. It was used by the immigrant German miners in the anthracite fields to describe a certain atmosphere condition.
 - Black damp: Carbon dioxide, nitrogen, and low oxygen.
 - White damp: Carbon monoxide
 - Fire damp: Methane
 - Stink damp: Hydrogen Sulfide
 - After damp: By-products of a fire or explosion

Detection Devices

- Hand held detectors
- Air Sample
- Gas Monitors
- Permanent sensor locations
- Flame Safety Lamp