

Occidental Chemical Corporation (OxyChem) is a leading North American manufacturer of polyvinyl chloride (PVC) resins, chlorine and caustic soda, key building blocks for a variety of indispensable products such as plastics, pharmaceuticals and water treatment chemicals. Other OxyChem products include caustic potash, chlorinated organics, sodium silicates, chlorinated isocyanurates and calcium chloride. For every product it makes, OxyChem's market position is No. 1 or No. 2 in the U.S. and No. 1, 2 or 3 in the world. Based in Dallas, Texas, the company has manufacturing facilities in the United States, Canada, Chile and Brazil.

OxyChem has been an active participant in the American Chemistry Council's Responsible Care® initiative since its inception in 1988. Demonstrating their commitment to attaining the highest levels of safety and environmental achievement, Responsible Care companies implement world-class management systems, measure performance based on industry wide metrics, and are subject to review by independent auditors.

Foreword

This handbook outlines recommended methods for handling, storing, and using chlorine. It also includes information on the manufacture and physical properties of chlorine. Additional information and contacts can be found on the internet at www.oxychem.com

"IMPORTANT: THE INFORMATION PRESENTED HEREIN, WHILE NOT GUARANTEED, WAS PRE-PARED BY TECHNICAL PERSONNEL AND IS TRUE AND ACCURATE TO THE BEST OF OUR KNOWLEDGE. NO WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTY OR GUARANTY OF ANY OTHER KIND, EXPRESS OR IMPLIED, IS MADE REGARDING PERFORMANCE, SAFETY, SUITABILITY, STABILITY OR OTHERWISE. THIS INFORMATION IS NOT INTENDED TO BE ALL-INCLUSIVE AS TO THE MANNER AND CON-DITIONS OF CHLORINE USE, HANDLING, STORAGE, DISPOSAL AND OTHER FACTORS THAT MAY INVOLVE OTHER OR ADDITIONAL LEGAL, ENVIRONMENTAL, SAFETY OR PERFORM-ANCE CONSIDERATIONS, AND OXYCHEM ASSUMES NO LIABILITY WHATSOEVER FOR THE USE OF OR RELIANCE UPON THIS INFORMATION. WHILE OUR TECHNICAL PERSONNEL WILL BE HAPPY TO RESPOND TO QUESTIONS, SAFE HANDLING AND USE OF THE PRODUCT RE-MAINS THE RESPONSIBILITY OF THE CHLORINE USER. NO SUGGESTIONS FOR USE ARE IN-TENDED AS, AND NOTHING HEREIN SHALL BE CONSTRUED AS, A RECOMMENDATION TO INFRINGE ANY EXISTING PATENTS OR TO VIOLATE ANY FEDERAL, STATE, LOCAL OR FOR-EIGN LAWS."

F	
Page 2 of 32	

٦

OXYCHEM

Page 3 of 32

THE COMMANDMENTS OF CHLORINE USAGE

- Only properly trained personnel wearing approved personal protective equipment should handle chlorine equipment, piping and containers.
- Every site using chlorine should have an emergency response plan in place that protects both the employees and the community. All employees should receive training on the emergency response plan.
- No one should respond to a chlorine emergency or leak if he or she is not a trained responder or does not have all of the necessary tools, equipment and PPE to respond safety.
- Nitrogen trichloride (NCI3) is an unstable compound that can self-detonate at relatively low concentrations. Very small concentrations can detonate with tremendous force. Systems where NCI3 may accumulate or concentrate must be actively monitored and managed to maintain NCI3 at safe levels.
- Chlorine will react violently with many different chemicals and materials. It is essential that all equipment, piping and valves be properly cleaned and dried for chlorine service before introducing any chlorine into the system.
- Chlorine will react with many metals, especially at elevated temperatures. It is critical that the material of construction be consistent with the operation conditions and that excessive external heat is not applied to chlorine containing systems.
- Dry chlorine will react violently with titanium. Systems must be in place to protect titanium equipment from exposure to dry chlorine and ensure titanium is not used in dry chlorine service.
- Many grades of carbon steel can become brittle when exposed to temperatures below -20F. It is essential that low-temperature carbon steel or a suitable alloy is used for continuous chlorine operation below -20F.
- Moisture in dry chlorine systems will rapidly increase carbon steel corrosion rates to dangerous levels. The possibility of generating hydrogen also exists. Moisture concentrations must be continuously monitored and controlled using moisture analyzers and drying systems.
- Liquid chlorine has a high coefficient of expansion. Any system where liquid chlorine can be trapped must have expansion protection.

TABLE OF CONTENTS

History and Growth of Chlorine	5
Production Process	6
Characteristics	7
Chlorine Container—Tank Trucks	8
Chlorine Containers—Rail Cars	9
Handling Equipment	12
Safety and Emergency Information	14
Technical Data	17
Bibliography	29
Chlorine Institute	30
Page 4 of 32]

THE HISTORY AND GROWTH OF CHLORINE

chlorine compounds. In 77 A.D., Pliny the Elder ease of its liguefaction. In 1851, Charles Watt obpublished one of the first practical collections of tained the first English patent for an electrolytic chemical reactions. His formula for gold purification chlorine production cell. generated chlorine as a by-product in the form of hydrogen chloride. But more than 800 years in Germany, England, Canada, and the United passed before written records showed that Arab States refined chlorine technology. Around 1890, cultures had learned to react chlorine with water German producers learned that, while wet liquid to produce hydrochloric acid.

ered that a mixture of hydrochloric and nitric ac- nary iron or steel pressure vessels. ids dissolved gold. This procedure generates chlorine, but there is no record that a heavy in mercury and diaphragm electrolytic cells and greenish gas was evolved. In 1630, Belgian Jean shipped in liquid form as a matter of course. A Baptiste van Helmont wrote of a "salt gas" that modern chlorine industry had formed. By 1913, we know contained chlorine, but it wasn't until 1774 that Swedish apothecary, Carl Wilhelm Scheele, generated, collected, and studied chlorine as an end in itself.

Even Scheele's discovery was nearly accidental. He collected chlorine out of simple curiosity. Perhaps he too would have treated the gas casually if he hadn't, on some impulse, placed some leaves and flowers into a bottle of chlorine. Within minutes the plants had turned white, and man had the first historical record of the bleaching action of chlorine.

Scheele's discovery came when both modern chemistry and the industrial revolution were taking their first halting steps down paths that would soon change the course of history. Antoine Lavoisier, the father of modern chemistry, took note of Scheele's work and quickly became embroiled in a controversy over whether became a minor market for a chemical that would chlorine was an element or a compound. Meanwhile, textile producers in the French town of Javelle heard of the bleaching action of this gas, and in 1789 bubbled it through a potash solution producing eau de Javelle, (Javelle Water), the first ing, furniture, and a wide range of household commercial liquid chlorine bleach.

short the intellectual ferment begun by Lavoisier and his followers. Lavoisier himself was guillotined in 1793, but his chemistry had crossed the English Channel. Once again, scientific curiosity paralleled commercial necessity. Humphry Davy, the English father of electrolysis, demonstrated that chlorine was an element with properties useful to Britain's rapidly expanding textile and paper chlorine at all. Chlorine and chlorine chemicals industries.

In the 1830s Michael Faraday, Davy's lab assistant, produced a definitive work on both

The earliest annals of chemistry mention the electrolytic generation of chlorine and the

Through the 1880s and 1890s producers chlorine was almost impossible to package, re-Around 1200 A.D., alchemists discov- moval of all water allowed safe shipment in ordi-

> In the early 1900s, chlorine was produced the first permanent liquid chlorine water purification system had been installed in Philadelphia. The following year, Altoona, Pennsylvania, became the first city to treat sewage with liquid chlorine.

> World War I brought added impetus to North American chlorine production. Submarine warfare practically eliminated imports of chemicals from Europe at a time when markets for many chemicals, including chlorine, were growing rapidly. By the end of the war, the United States had a large and firmly entrenched domestic chlorine industry.

> In the 1930s, the world's chemical industry erupted in a period of extraordinary growth that still continues. Bleaching properties of chlorine became just one of its major uses. Its disinfecting properties remained vital to health, but soon affect almost every human activity.

Today, we use chlorine as a raw material in the manufacture of polyvinyl chloride, a plastic used in fabricating flooring, pipe, wallpaper, clothproducts. We treat our illnesses with complex The eruption of the French Revolution cut drugs and treat our crops with insecticides, herbicides and fungicides that contain chlorine as part of their basic structure. Chlorinated chemicals also enable us to refrigerate and freeze our food, cool our homes, offices and cars, and even insulate our buildings from the heat and cold.

> One of the most important uses of chlorine is helping produce chemicals that contain no help promote reactions that produce a host of useful products.

Production Process

The basic raw material for the process, salt, can be processed in ordina comes from either mines or underground wells. Additionally, the chlorine s Mined salt is dissolved with water to form raw amounts of air, hydrogen brine. In other cases, water is pumped into salt dioxide (due to small amo deposits, forming brine in the earth that is tapped and drawn off from the resulting brine well. Once the chlorine st

Raw brine contains impurities that interfere with chlorine caustic production. They are removed by chemical treatment, settling, and filtration. The purified brine is pumped to the cell room. The cell room contains one of three types of electrolytic cells for decomposing brine into chlorine, caustic soda or caustic potash, and hydrogen. These three cell types are diaphragm, membrane and mercury cells. OxyChem no longer utilizes mercury cells in the production of chlorine and caustic soda in the United States.

The chlorine that leaves the cell is hot and wet, and very corrosive. It must be cooled and

dried in specially designed equipment before it can be processed in ordinary steel equipment. Additionally, the chlorine stream contains small amounts of air, hydrogen and some carbon dioxide (due to small amounts of carbon bearing chemicals in the brine).

drawn off from the resulting brine well. Once the chlorine stream is cooled and Raw brine contains impurities that interfere chlorine caustic production. They are reved by chemical treatment, settling, and filon. The purified brine is pumped to the cell pressure containers.

> Any gaseous contaminants in the chlorine stream are removed. Small amounts of chlorine mixed with them are nearly completely recovered. The recovered chlorine is then returned to the liquefaction process.

Characteristics

ture and pressure, is a greenish yellow gas with moisture will cause severe corrosion. a pungent and irritating odor. Since chlorine is very active chemically, it is found in nature only vated temperatures. Chlorine reacts with carbon in combination with other elements. Sodium steel at elevated temperatures. Operations chloride, for example, is widely and abun- above 250°F should be avoided. Dry chlorine dantly distributed in nature and constitutes the will also react violently with titanium. Titanium chief source of chlorine. Because gaseous chlo- should never be used in dry chlorine service. rine is approximately two-and-one-half times as heavy as air, it is slow to diffuse into the air. It der certain conditions it can embrittle ordinary tends to accumulate in low places.

application of pressure at reduced tempera- other materials of construction should be contures to form a clear, amber-colored liquid. Liq- sidered. uid chlorine is approximately one-and-one-half times as heavy as water.

In the presence of moisture, both gaseous bleaching agent. and liquid chlorine are extremely corrosive to common metals of construction. At low pres- mable and will not support combustion in the sures, wet chlorine can be handled in equip- normal sense. However, chlorine will support ment made of glass, chemical stoneware, titanium the combustion of certain materials under speand certain plastics. Installations employing wet cial conditions. chlorine require special care and recommendations can be made only after a thorough and ity for moisture. Regardless of the environcareful investigation. Platinum, tantalum and titanium are some of the metals resistant to moist ity, all open ends of chlorine pipelines should chlorine.

Dry chlorine, both gaseous and liquid, can be handled safely in equipment fabricated from iron, steel, certain stainless steels, Monel® metal, nickel, copper, brass, bronze and

lead. These metals are not aggressively at-Chlorine, at ambient conditions of tempera- tacked by dry chlorine but the slightest trace of

However, dry chlorine attacks metals at ele-

Since chlorine boils at about -30° F, uncarbon steels. If temperatures below -20° F are Gaseous chlorine can be liquefied by the expected to occur, special carbon steels, or

> Chlorine is an excellent oxidizing agent, which accounts for its widespread use as a

> Liquid and gaseous chlorine are nonflam-

Dry chlorine has an extremely high affinmental conditions of temperature and humidbe closed, moisture tight, when not in use. An open end of a chlorine delivery line will, within a time interval of only a few minutes, pick up sufficient moisture from the atmosphere to cause severe corrosion.

Page 7 of 32

CHLORINE CONTAINERS

OxyChem supplies chlorine in rail cars to a variety of industries. Occasionally, the chlorine is repackaged into smaller, easier to manage containers depending on the application. Tank trucks, ton containers and cylinders of chlorine may be encountered. Please contact your supplier or the Chlorine Institute for information on the proper handling and use of these containers.

TANK CARS

OxyChem supplies liquid chlorine in 90-ton rail tank cars. OxvChem's fleet of chlorine tank cars complies with all specifications and regulations of the U.S. Department of Transportaion (DOT). Chlorine tank cars are constructed of fusion welded steel, built according to DOT specification 105J500W. The tank is provided with head protection and insulating material which, is protected by a steel jacket. The only opening in the tank is in the dome, which con-Figure 1 tains all of the valves on the tank. shows typical rail car dimensions.

The two angle valves parallel to the length of the tank car deliver liquid chlorine. The liquid valves are connected to eduction pipes, which are equipped with excess flow valves. The excess flow valve is designed to stop flow if the angle valve is sheared off the railcar. It is not designed to stop chlorine flow in the event of a ruptured delivery line. The excess flow valves are designed to stop the flow of liquid chlorine if the delivery rate exceeds 15,000 or 32,000 pounds/hour for a 90-ton car. Figure 2 shows a typical tank dome arrangement.

The two angle valves at right angles to the longitudinal axis of the tank car can be used to apply dry air or nitrogen padding. Figure 3 shows the valve arrangement under the tank car on the track or car to warn persons approaching dome cover.

has one inch standard tapered female pipe unloaded and disconnected from the discharge threads. This outlet is protected by a one inch connection. Signs must be made of metal and pipe plug which must be kept in place when- be at least 12 by 15 inches in size and bear ever the valve is not in use.

The safety valve is located at the center of the dome. On DOT 105J500W tank cars, the safety valve is designed to initially relieve at a pressure of 375 psig and then it operates as a regular spring-loaded valve set to discharge at 351 psig. Safety valves on chlorine tank cars must never be disturbed or tampered with under any circumstances.

Each time a tank car is returned to OxvChem, it undergoes a thorough inspection. Any damaged tank car is immediately removed from service until repairs can be made.

Midland angle valves are replaced on a routine schedule in accordance to OxyChem's quality standards. The tank car safety valves and excess flow valves are inspected and cleaned at the same time.

Tank cars must be unloaded only on the consumer's protected private track. When a tank car of chlorine is placed on a private siding for unloading, the brakes must be set and the wheels blocked. The following precautions are required by DOT Hazardous Materials Regulation, CFR Title 49, Paragraph 174.67, governing the transportation of hazardous materials: "Caution" signs must be placed in such a position the car from the open end or ends of the siding The outlet of each angle valve on a tank car and must be left up until after the car is

Page 9 of 32

the words "Stop-Car Connected" or "STOP- chlorine valve completely and waiting until a Men at Work." The word "STOP" must be in let- noticeable click is heard, indicating that the ters at least 4 inches high and the other words metal ball has fallen back into place. in letters at least 2 inches high. The letters must be white on a blue background. should be protected by a preferably locked derail at the switch end or ends of a siding and be a minimum of 50 feet away.

containing any chlorine is a DOT violation. If a defined by the setting of the pressure relief valve tank car is defective, call your supplier. Oxy-Chem's 24-hour emergency number is (800) ding pressure limits for chlorine tank cars can be 733-3665.

Use a flexible connection for unloading chlorine as outlined in The Chlorine Institute, Inc. Pam-phlet No. 6 and 57, DWG No. 118.

Opening a liquid chlorine valve too rapidly could cause the excess flow valve to function and stop the flow of liquid chlorine. The excess flow valve can be unchecked by closing the

In many chlorine handling systems, ad-Tank cars ditional pressure is necessary for unloading at a normal or accelerated rate. Under these conditions, dry air (dew point of $< -40^{\circ}$ F) must be used. A separate plant air drying system is needed for Shipping a leaking or defective tank car this operation. Safe padding pressure limits are and the temperature of the liquid chlorine. Padfound in The Chlorine Institute, Inc., Drawing # 201. For additional information on the handling and use of tank cars refer to The Chlorine Institute, Inc., Pamphlet # 66

Figure 3 Tank Car Valve Arrangement

Page 11 of 32

Handling Equipment

should be fabricated from extra heavy, black iron pipe. Joints must be welded or flanged. Fittings will cool the remaining liquid chlorine to a must be eliminated wherever possible.

manufactured specifically for use with chlorine. vapor will flow into the process. The use of a For additional information on valves for chlorine vaporizer supplies sufficient heat to the liquid service please consult The Chlorine Institute, Inc., chlorine from an outside source so that the tem-Pamphlet # 6.

The use of valves in pipelines must balance minimizing accidental release and reducing fugitive emissions.

Liquid chlorine has a high coefficient of thermal expansion. If liquid chlorine is trapped between two valves, high hydraulic pressure may offered by the pipeline. A further loss in pressure develop and lead to a rupture of the line or its or head is experienced when the liquid is elefittings. Expansion chambers should be installed vated. For every foot in elevation that liquid any place liquid chlorine can be trapped between chlorine is raised, there is a loss in pressure of two valves. Expansion chambers are fabricated from extra heavy pipe and have a capacity pressure losses due to the resistance of the pipequal to at least 20 volume percent of the pro- ing. tected section of pipe.

consult The Chlorine Institute, Inc., Pamphlets # 6 and 60.

Chlorine unloading systems should include an emergency shut off system to remotely isolate both ends of the flexible transfer hose. See The Chlorine Institute, Inc., Pamphlet #57 for additional information.

When large amounts of gaseous chlorine are required for a specific process, it is advisable to remove the chlorine from the manufacturer's container as a liquid and pass it through a vaporizer to convert it to a gas. In this manner,

much more gaseous chlorine can be sent to In general, pipelines for handling chlorine process than would otherwise be possible. Rapid removal of gaseous chlorine from a container point where the generation of chlorine vapor Valves used in chlorine service should be will be greatly reduced and little or no chlorine perature and pressure of the chlorine supply remains relatively constant. For more information on Chlorine Vaporizers, consult The Chlorine Institute, Inc., Pamphlet No. 9

> Any liquid passing through a pipeline suffers a loss in pressure due to the resistance to flow about 0.635 psi which should be added to the

The graph on page 13 shows the calculated For more information on piping systems, pressure drop for liquid chlorine flowing through SCH 80 pipe of various dimensions. When valves and fittings are included in the piping system, the additional pressure loss can be readily computed by converting the friction loss in the valves and fittings to equivalent lengths of straight pipe. The data below can be used to calculate the pressure drop from various types of fittings.

Page 12 of 32

Fitting	1"	³ / ₄ "	1/2"
Globe Valve (full open)	28.3	21.3	14.2
Angle Valve (full open)	12.0	9.0	6.0
Standard T (through the branch)	4.8	3.6	2.7
Long Radius Elbow	1.6	1.2	0.9

Equivalent Length of Pipe in Feet

Taken from the Crane Company Technical Paper No. 409

Safety and Emergency Information

must be thoroughly instructed in the necessary forced air through a system of ducts, must be precautions for the safe handling, storage and provided. A one-to-four-minute rate of air use of chlorine. Carefully study everything in this change is required in an emergency. Precaumanual.

Read the MSDS before use.

Neither the gas nor the liquid alone is ex- Eye Wash Fountains and Deluge Showers plosive or flammable. Both react chemically with many substances, especially at elevated deluge showers must be provided in strategic temperatures. The gas is greenish yellow in locations wherever chlorine is used. Personnel color at high concentrations. It has a penetrating odor, and is two-and-one-half times as sure adequate water flow and temperature. heavy as air. If it escapes from a container or system, it will seek the lowest level in the build- Emergency Respiratory Protection ing or area in which the leak occurs. Training should include the use of safety equipment and ever chlorine is handled or used. Therefore, self first-aid procedures.

Employee Protection

irritates the mucous membranes, respiratory tract tamination. Such equipment shall have a rating and eyes. Smoking can aggravate the respiratory of at least 30 minutes use, and be equipped with symptoms which result from chlorine exposure. Prolonged exposure to the gas causes coughing a chlorine emergency area must be protected by and gagging, and may result in pulmonary this respiratory protective equipment. edema and death. Individuals with respiratory problems should consult a physician before work- Emergency Kits ing with chlorine.

Avoid contact with eyes, skin and clothing. Gaseous chlorine hydrolyzes in the presence of moisture, forming hydrochloric acid, which irritates the eyes and skin. Liquid chlorine removes body heat, freezing exposed skin. Wash thoroughly after handling chlorine. Shower, using plenty of soap and water.

Safety Equipment

Use goggles, rubber gloves, rubber shoes, hard hat and a NIOSH approved respirator with an acid gas cartridge where airborne concentrations are expected to exceed exposure limits or when symptoms have been observed that are indicative of overexposure. It is essential that use of chlorine and to standardize chlorine haneach individual who may be exposed to chlorine dling equipment. The Institute also sponsors a carry, at all times, a respirator approved for mutual assistance program in which trained chlorine use. For re-entry into an emergency teams respond to chlorine emergencies on a 24area, self contained breathing equipment must hour-a-day, 7-day-a-week basis. In the United be used.

Ventilation

Provide adequate ventilation to reduce the TREC (Chemical Transportation accumulation of gaseous chlorine in low areas.

In some cases, natural ventilation may be ade-All personnel engaged in handling chlorine quate; in others, artificial ventilation, such as tions must be taken to avoid discharging chlorine into areas where it can cause damage or personal injury.

Readily accessible eye wash fountains and should test equipment on a routine basis to en-

Severe exposure to chlorine may occur wher--contained positive pressure breathing apparatus, approved for emergency chlorine use, should be located strategically outside chlorine Do not breathe chlorine vapors. Chlorine work areas, near entrances and away from cona low-pressure warning bell. Any person entering

In an emergency involving chlorine cylinders, ton containers, tank cars or barges, kits are available to stop leaks. All chlorine users should have access to the appropriate kits. Chlorine emergency kits are maintained by producers and are located strategically throughout the United States and Canada. In addition, kits can be borrowed in an emergency situation from other chlorine users, distributors and some fire departments.

Other Emergency Measures

The Chlorine Institute. Inc. was formed in 1924 by chlorine producers to promote the safe States, this response program is known as CHLOREP (Chlorine Emergency Plan). CHLO-REP can be activated by contacting CHEM-

Emergency Center), at 1-800-424-9300, or by contacting the appropriate CHLOREP team.

Canada is divided into 10 regions with teams available from 13 plant sites as estab- Leaks lished by TEAP (Transportation Emergency Assistance Plan) of the Canadian Chemical Pro- leak. Moisture hydrolyzes chlorine, forming hyducers' Association. In Canada, assistance is drochloric acid which attacks the metal, thus available by calling either the TEAP regional enlarging the leak. If a container is leaking chlonumber or the appropriate response team.

these teams provide assistance in any chlorine of escaping chlorine is significantly less from a emergency whether a transportation incident or gas than a liquid leak, since one volume of ligproblem at the point of usage. Chlorine users uid is equal to about 460 volumes of gas. must have the telephone numbers of their re- Evacuate the area and keep all personnel upsponse teams readily available for use in chlo- wind of leaks, preferably on high ground. rine emergency situations.

Chlorine users must accept responsibility for taking all proper precautions to prevent acci- Chemical Neutralization dents with chlorine. The fact that emergency assistance is available should not encourage (caustic soda, soda ash or hydrated lime) while carelessness in the use of this chemical.

In Case of Fire

as an oxidizer and supports combustion even in per, nickel or iron. Control pH at the discharge the absence of oxygen. Cool the affected con- to sewer or the receiving water and comply with tainers with large amounts of water ONLY if the all federal, state, and local regulations. containers are not leaking. Never apply water directly on a chlorine leak. Use any other extinguishing medium appropriate for the surround-

ing fire. Use self-contained breathing apparatus and full protective equipment.

Do not apply water directly on a chlorine rine position the container so the liquid remains In both the United States and Canada, inside and allows the gas to vent. The guantity

Absorb chlorine in an alkaline solution maintaining an excess of base at all times (see chart below). Destroy resulting hypochlorite by adding sodium bisulfite or treating the basic hy-Chlorine itself will not burn, but it does act pochlorite at 122-158F in the presence of cop-

Recommended Alkaline Solutions for Absorbing Chlorine

Size of	Size of 100% Ca		100% S	oda Ash	100% Hydrated Lim		
Chlorine Container (Pounds Net)	Pounds	Water (gallons)	Pounds	Water (gallons)	Pounds	Water (gallons)	
100	125	60	300	200	115	125	
150	188	90	450	300	175	188	
2000	2000 2500 1200		5980	4000	2325	2500	

Slurry must be continuously and vigorously agitated if chlorine is to be absorbed 100%.

FIRST AID

Exposure Symptoms

Liquid chlorine is an inhalation, skin and eye irritant. Prolonged contact can produce burns and possibly frostbite. Liquid chlorine vaporizes to gas in the open atmosphere. At detectable odor levels, the gas will irritate the mucous membranes and respiratory tract. (Detectable odor levels range from 0.3 to 3.0 ppm depending on the individual.) With excessive exposure to chlorine, the individual exhibits excitement, accompanied by restlessness, sneezing and copious salivation. In extreme cases, retching, pulmonary edema and even death may occur.

There are no specific known antidotes for chlorine. Effective medical management is necessary for relief of symptoms with proper treatment. Complete recovery normally occurs.

Inhalation

If adverse effects occur, move to an uncontaminated area. Give artificial respiration if a person is not breathing. If breathing is difficult, humidified oxygen should be administered by qualified personnel. If respiration or pulse has stopped, have a trained person administer Basic Life Support (Cardio-Pulmonary Resuscitation/Automatic External Defibrillator) and CALL EMERGENCY SERVICES IMMEDI-ATELY.

Skin

Immediately flush contaminated areas with water. Remove contaminated clothing, jewelry and shoes immediately. Do not attempt to remove frozen clothing from frostbitten areas. Wash contaminated areas with soap and water. Thoroughly clean and dry contaminated clothing and shoes before reuse. GET MEDICAL ATTENTION IMMEDIATELY.

Eyes

Immediately flush eyes with a directed stream of water for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eye and lid tissues. Washing eyes within several seconds is essential to achieve maximum effectiveness. GET MEDICAL ATTENTION IMMEDIATELY.

Ingestion

Due to its physical properties, swallowing liquid chlorine is extremely unlikely. In such an instance, call a physician immediately.

Notes to Physician

Because there is no known antidote for chlorine gas inhalation, treatment is symptomatic. The effective and immediate relief of symptoms is the primary goal. Steroid therapy, if given early, has been re-

ported effective in preventing pulmonary edema.

EMPLOYEE TRAINING FOR SAFE OPERATIONS

Safety in handling chlorine depends, to a great extent, upon the effectiveness of employee education, proper safety instructions, effective supervision and the use of proper personal protective equipment.

Supervisory personnel are responsible for providing proper instruction and training of employees. Training for all employees should be conducted periodically to reinforce correct methods and to maintain a high degree of competence in handling procedures. All new employees must be trained in handling and using chlorine before operating equipment. Employees should be thoroughly familiar with the hazards that may result from improper handling of chlorine. Each employee should know emergency and first aid measures, and how to use associated equip -ment.

As a minimum, employee training should include the following:

- Instruction with periodic drills regarding the locations, purpose, limitations and use of chlorine emergency kits, firefighting equipment, fire alarms, and shutdown equipment such as valves and switches.
- Instruction with periodic drills regarding the locations, purpose, limitations and use of personal protective equipment, both normal and emergency.
- Instruction with periodic drills regarding the locations, purpose and use of safety showers, eye washes, or the closest source of water for use in emergencies.
- Instruction with periodic drills for specified employees regarding the purpose and use of respiratory first aid equipment.
- Instruction on avoiding inhalation of chlorine gas and contact with the liquid. Emphasis should be placed on chlorine's effect on the human body at different exposure levels.
- Instruction on procedures for reporting all equipment failures to the proper authority.
- Instruction on procedures for conducting inspections before working with equipment and, periodically, during operations. This instruction should include procedures for recognizing leaks and other potential problems.
- Instruction on the proper actions to take when leaks occur and procedures for evacuating affected areas.

Page 16 of 32

Physical Properties of Ch	lorine				
Atomic weight: 35.453	Viscosi	Viscosity of Chlorine			
Boiling point: -34.05°C (-29	.29°F)	Gas	s at 1 Atm		
Freezing point: -100.98°C (°C	cp.			
Critical temperature: 144.0°	-30	0.0112			
Critical pressure: 7711 kPa	(76.1 atm, 1118 psi)	0	0.0126		
Critical volume: 1.745x10 ⁻³	m ³ /kg (0.02796 cu ft/lb)	100	0.0169		
Heat of fusion at the melting	g point: 6405± 5 J/mol	200	0.021		
	(38.86 Btu/lb)	300	0.025		
	Thermal Chlorine	Thermal Conductivity of Chlorine Gas at 1 Atm			
		°C	Btu/(hr-ft-°F)		
		-30	0.0042		
		0	0.0048		
		100	0.0067		
		200	0.0086		
		300	0.0103		
		Thermal	Conductivity of id Chlorine		
		°C	Btu/(hr-ft-°F)		
		-100	0.1149		
		0	0.0847		
		100	0.0532		
		144	0.0230		
Conversion of Units					
Physical Quantity	SI Unit	Conv	ersion		
Concentration	kilograms per cubic meter	1 kg/m ³ = 0.0083	45 lbs/gal		
Density	kilograms per cubic meter	1 kg/m ³ = 0.0624	28 lbs/cu ft		
Energy	joules per kilogram	1 J/kg = 0.0004	30 Btu/lb		
Entropy	joules per kilogram-Kelvin	1 J/kg-°K = 0.0002	39 Btu/lb-°F		
Pressure	Pascals (Newtons per square meter)	1 Pa = 0.0001	45 psi		
		1 Pa = 9.8692	3x10 ⁻⁰ atm		
Surface Tension	joules per square meter	$1 \text{ J/m}^2 = 0.068522 \text{ lb(force)/ft}$			
		$1 \text{ J/m}^2 = 1000 \text{ ergs/cm}^2$			
Temperature	Kelvin	°K = °C+273.15			
		°C = (°F-32)	/1.8		
Thermal Conductivity	watts per meter-Kelvin	1 W/m-°K = 0.577797 Btu/(hr-ft-°F)			
Viscosity	Pascal-second	1 Pa-s = 0.6719	69 lb/ft-sec		
		1 Pa-s = 1000 centipoise			
Volume	cubic meters per kilogram	1 m ³ /kg = 16.018	5 cu ft/lb		

Thermodynamic Properties of Saturated Chlorine (Base: h = 0, s = 0 for solid CL at 0°R)										
	Absolute	2 and 107 Volu	ume ft/lb)		Enthalpy (Btu/lb)		Entropy (Btu/ib-°R)			
Temp (°F)	Pressure (psi)	Liquid	Vapor	Liquid	Vaporization	Vapor	Liquid	Vaporization	Vapor	
t	р	vj	vg	hj	'n	hg	s	°s	sg	
-130	0.51902	0.0093981	95.993	78.488	137.13	215.57	0.37472	0.41593	0.79065	
-120	0.80251	0.0094727	63.930	80.890	135.72	216.61	0.38201	0.39956	0.78158	
-110	1.2055	0.0095492	43.776	83.305	134.35	217.65	0.38901	0.38420	0.77322	
-100	1.7643	0.0096277	30.738	85.697	133.00	218.69	0.39575	0.36976	0.76551	
-90	2.5213	0.0097083	22.081	88.067	131.66	219.73	0.40225	0.35615	0.75840	
-80	3.5258	0.0097911	16.193	90.420	130.34	220.76	0.40852	0.34328	0.75181	
-70	4.8336	0.0098761	12.101	92.759	129.02	221.78	0.41459	0.33110	0.74570	
-60	6.5073	0.0099636	9.1996	95.087	127.71	222.80	0.42048	0.31954	0.74003	
-50	8.6157	0.010053	7.1037	97.406	126.40	223.81	0.42620	0.30854	0.73474	
-40	11.234	0.010146	5.5642	99.719	125.08	224.80	0.43177	0.29805	0.72982	
-30	14.443	0.010242	4.4156	102.02	123.76	225.79	0.43719	0.28802	0.72522	
-29.29	14.696	0.010248	4.3457	102.19	123.66	225.86	0.43757	0.28732	0.72490	
-20	18.329	0.010340	3.5462	104.33	122.41	226.75	0.44248	0.27842	0.72090	
-10	22.984	0.010442	2.8793	106.64	121.05	227.70	0.44765	0.26920	0.71686	
0	28.504	0.010547	2.3613	108.95	119.67	228.63	0.45271	0.26033	0.71305	
10	34.987	0.010656	1.9544	111.27	118.26	229.53	0.45767	0.25179	0.70946	
20	42.538	0.010768	1.6313	113.59	116.82	230.41	0.46252	0.24354	0.70606	
30	51,265	0.010885	1.3722	115.92	115.34	231.26	0.46729	0.23555	0.70284	
40	61.276	0.011006	1.1625	118.25	113.83	232.09	0.47196	0.22781	0.69978	
50	72.684	0.011132	0.99128	120.59	112.28	232.88	0.47656	0.22029	0.69686	
60	85 606	0.011263	0.85030	122.95	110.68	233.63	0 48109	0 21297	0 69406	
70	100 15	0.011399	0 73335	125.32	109.02	234.35	0.48555	0.20583	0.69138	
80	116.45	0.011541	0.63565	127 71	107.31	235.02	0 48994	0 19885	0.68879	
80	134.63	0.011690	0.55346	130.11	105.54	235.65	0 49428	0.19200	0.68629	
100	154.80	0.011846	0.48388	132.53	103.70	236.23	0.49857	0.18528	0.68385	
110	177.09	0.012009	0.42462	134.98	101.78	236.76	0.50281	0.17866	0.68148	
120	201.64	0.012181	0.37386	137.45	99,782	237.24	0.50702	0.17213	0.67915	
130	228.57	0.012362	0.33014	139.96	97,685	237.65	0.51121	0.16565	0.67686	
140	258.03	0.012554	0.29228	142.51	95 483	237.99	0.51537	0.15922	0.67459	
150	290.14	0.012758	0.25934	145.09	93.162	238.26	0.51953	0.15280	0.67233	
160	325.05	0.012975	0.23052	147.73	90,709	238.44	0.52368	0.14637	0.67006	
170	362,91	0.013208	0.20520	150.43	88,105	238.54	0.52786	0.13991	0.66778	
180	403.86	0.013458	0.18285	153.20	85,328	238.53	0.53206	0.13339	0.66545	
190	448.07	0.013728	0.16301	156.06	82 354	238 41	0.53631	0.12676	0.66307	
200	495.68	0.014023	0.14533	159.01	79.150	238.16	0.54063	0.11998	0.66061	
210	546.88	0.014348	0.12947	162.07	75.677	237.75	0.54504	0.11300	0.65805	
220	601.82	0.014710	0.11518	165.28	71.882	237.16	0.54958	0.10575	0.65534	
230	660.70	0.015118	0.10221	168.66	67 696	236.36	0.55428	0.098155	0.65243	
240	723.69	0.015587	0.090340	172.25	63.022	235.28	0.55919	0.090072	0.64926	
250	790.99	0.016143	0.079352	176.13	57.713	233.84	0.56440	0.081322	0.64573	
260	862.81	0.016827	0.069011	180.38	51 528	231.00	0.57004	0.071508	0.64164	
270	939.35	0.017729	0.058995	185 19	44 007	229.20	0.57635	0.060310	0.63666	
280	1020.8	0.010102	0.049847	101.04	33 097	225.03	0.58303	0.045048	0.62087	
200	1107.5	0.022862	0.034207	200.80	14.080	214.88	0.50658	0.018756	0.62867	
201.2	1118 37	0.027060	0.027080	207.77	00,000	207 77	0.60582	0.000000	0.60582	
201.2	1110.01	0.021000	0.021000	201.11	00.000	291.11	0.00002	0.000000	0.00002	

REF: Kapoor, R.M.; Martin, J.J., Thermodynamic Properties of Chlorine, Engineering Research Institute, University of Michigan, Ann Arbor, Michigan (1957).

Thermodynamic Properties of Superheated Chlorine													
Base: h = 0	1 = 0, s = 0 for solid Ci, at 0 *R												
Temp. ("F)		10 psi (-44.4°F)		.	14.696 psl (-29.3*F)			20 psl (-16.2*F)			25 psl (-6.1*F)		
t 0	V 6.8782	h 229.30	S 0.74326	V 4.6552	h 229.13	s 0.73226	V 3 3996	h 228.94	S 0.72338	2 7036	h 228.76	S 0.71689	
25	7.2623	232.10	0.74919	4.9185	231.94	0.73822	3.5948	231.77	0.72937	2.8610	231.60	0.72291	
50	7.6458	234.92	0.75488	5.1812	234.78	0.74392	3.7892	234.61	0.73510	3.0178	234.45	0.72866	
100	8.4113	240.63	0.76556	5.7050	240.51	0.75464	4.1766	240.36	0.74585	3.3296	240.22	0.73945	
125	8.7934	243.52	0.77060	5.9663	243.40	0.75969	4.3697	243.26	0.75092	3.4849	243.13	0.74453	
175	9.5567	249.33	0.78015	6.4879	249.23	0.76926	4.7548	246.17	0.75051	3.7944	246.05	0.75414	
200	9.9380	252.27	0.78468	6.7483	252.16	0.77380	4.9469	252.05	0.76506	3.9487	251.94	0.75870	
225	10.319	255.21	0.78907	7.2684	255.12	0.7/819	5.3305	255.00	0.76946	4.1028	254.90	0.76311	
275	11.080	261.15	0.79743	7.5281	261.06	0.78657	5.5220	260.96	0.77785	4.4103	260.86	0.77151	
300	11.460	264.13	0.80142	7.7877	264.04	0.79057	5.7133	263.95	0.78175	4.5638	263.86	0.77553	
350	12.221	270.13	0.80907	8.3065	270.05	0.79822	6.0956	269.96	0.78952	4.8704	269.88	0.78320	
375	12.601	273.14	0.81273	8.5656	273.06	0.80189	6.2865	272.98	0.79319	5.0235	272.90	0.78687	
Temp.	12.301	30 psi	0.01023	0.0247	35 psi	0.00040	0.4//3	40 psi	0.75676	5.1/65	45 psl	0.73045	
(*F) t	v	(2.4*F) h	5	v	(10.0°F) h	5	v	(16.8°F) h	5	v	(23.0°F) h	5	
25	2.3717	231,43	0.71759	2.0222	231.25	0.71306	1.7600	231.08	0.70910	1.5559	230.90	0.70558	
50 75	2.5034 2.6343	234.30 237.18	0.72336	2.1358 2.2489	234.14 237.03	0.71885	1.8601	233.97 236.88	0.71492 0.72048	1.6456	233.81 236.73	0.71142	
100	2.7648	240.08	0.73419	2.3614	239.94	0.72972	2.0588	239.80	0.72582	1.8234	239.66	0.72236	
125	2.8949	242.99	0.73928	2.4735	242.86	0.73483	2.1574	242.73	0.73094	1.9115	242.60	0.72750	
175	3.1540	248.87	0.74892	2.6966	248.75	0.74449	2.3535	248.63	0.74063	2.0867	248.51	0.73721	
200	3.2831	251.82	0.75349	2.8077	251.71	0.74906	2.4512	251.60	0.74522	2.1738	251,49	0.74181	
250	3.5407	257.77	0.76218	3.0293	257.67	0.75777	2.6457	257.57	0.75394	2.3474	254 AT	0.75055	
275	3.6692	260.76	0.76632	3.1398	260.67	0.76192	2.7427	260.57	0.75810	2.4339	260.47	0.75471	
300	3.7975	263.76	0.77424	3.2501	263.67	0.76594	2.8395	263.58	0.76213	2.6063	265.49	0.75875	
350	4.0536	269.79	0.77802	3.4702	269.71	0.77364	3.0326	269.62	0.76983	2.6923	269.54	0.76646	
375	4.1815	272.82	0.78170	3.5801	272.74	0.77732	3.1290	272.66	0.77352	2.7782	272.58	0.77015	
Temp.	4.3033	50 psl	0.70320	60 psl			70 psl			80 psl			
(*F)	v	(29.6°F)	5	v	(38.8°F)		v	(47.7°F)			(55.8*F)		
50	1.4740	233.65	0.70827	1.2163	233.31	0.70276	1.0321	232.97	0.69803	-	-	-	
75	1.5547	236.57	0.71388	1.2846	236.26	0.70841	1.0915	235.95	0.70373	0.9465	235.62	0.69961	
125	1.7148	242.46	0.72441	1.4196	242.19	0.71901	1.2086	241.91	0.71440	1.0503	241.63	0.71035	
150	1.7941	245.42	0.72936	1,4954	245.17	0.72399	1.2665	244.91	0.71941	1.1015	244.65	0.71540	
200	1.9519	251.37	0.73875	1.6190	251.15	0.73342	1.3812	250.92	0.72888	1.2028	250.68	0.72492	
225	2.0303	254.37	0.74320	1.6850	254.15	0.73789	1.4382	253.93	0.73337	1.2530	253.71	0.72942	
275	2.1868	260.38	0.75168	1.8161	260.18	0.74640	1.5514	259.99	0.74191	1.3528	259.79	0.73799	
300	2.2647	263.40	0.75572	1.8814	263.21	0.75045	1.6077	263.03	0.74597	1.4023	262.84	0.74207	
325	2.3424	265.42	0.75964	2.0116	269.29	0.75438	1.6638	266.07	0.74991	1.4517	265.89	0.74602	
375	2.4975	272.50	0.76714	2.0764	272.33	0.76190	1.7757	272.17	0.75745	1.5501	272.01	0.75358	
400 Temp	2.5748	275.54 90 psl	0.77073	2.1412	275.39 100.osl	0.76550	1.8315	125.23	0.76106	1.5991	275.08 150.psi	0.75720	
(°F)		(63.1°F)			(69.9°F)			(84.8°F)	-	(97.7°F)			
75	0.83371	235.30	0.69592	0.74329	734.96	0.69258	-		-	-		-	
100	0.88072	238.32	0.70146	0.78621	238.02	0.69816	0.61574	237.23	0.69100	0.50165	236.40	0.68493	
125	0.92717	241.35	0.70675	0.82855	241.07	0.70349	0.65075	240.33	0.69643	0.53187	239.57	0.69048	
175	1.01871	247.41	0.71670	0.91186	247.16	0.71349	0.71925	246.53	0.70659	0.59063	245.87	0.70081	
200	1.0640	250.45	0.72139	0.95298	250.22	0.71821	0.75291	249.62	0.71137	0.61936	249.00	0.70566	
250	1.1538	255.54	0.73029	1.03437	255.27	0.72714	0.81932	255.80	0.72040	0.67584	255.26	0.71479	
275	1.1983	259.59	0.73452	1.07471	259.39	0.73139	0.85215	258.89	0.72468	0.70369	258.38	0.71912	
300	1.2426	265.71	0.73861	1.11487	265.53	0.73949	0.91723	261.98	0.72883	0.75877	261.50	0.72734	
350	1.3308	268.78	0.74642	1.19467	268.61	0.74333	0.94952	268.17	0.73672	0.76804	267.74	0.73125	
375 400	1.3747	271.85 274.92	0.75015	1.23436 1.27393	271.68 274.76	0.74707	0.98167	271.27 274.37	0.74049	0.81317 0.84017	270.86 273.97	0.73504 0.73872	
Temp.		200 psi			300 psi		400 psl				500 psi		
(1)	v	(119,417) h	5	v	(152.9°P)	5	v	(1/9.1%) h	5	v	(200.9*P) h	s	
150	0.40616	241.25	0.68610	0.24844	237.90	0.67098	-	-	-	-	-	_	
175	0.42934	244.50	0.69533	0.26630	241.48	0.6/674	0.19729	241.80	0.67059	_	_	=	
225	0.47430	250.95	0.70111	0.29987	248.40	0.68723	0.21139	245.55	0.67627	0.15684	242.26	0.66655	
250 275	0.49625	254.14	0.70570	0.31590	251.78	0.69209	0.22479	249.19 252.74	0.68149	0.16913	246.28	0.67231	
300	0.53934	260.51	0.71437	0.34690	258.44	0.70116	0.25015	256.23	0.69109	0.19158	253.85	0.68262	
325	0.56056	263.68	0.71847	0.36199	261.74	0.70543	0.26230	259.68	0.69555	0.20211	257.48	0.68733	
375	0.60247	270.01	0.72329	0.39155	268.27	0.71350	0.28585	265.46	0.70393	0.22222	264.56	0.69608	
400	0.62321	273.17	0.73002	0.40607	271.52	0.71734	0.29732	269.81	0.70788	0.23192	268.03	0.70017	
REF: Kapoo	EF: Kapoor, R.M.; Martin, J.J., Thermodynamic Properties of Chiorine,												

Engineering Research Institute, University of Michigan, Ann Arbor, Michigan (1957).

Γ

Page 20 of 32

Page 21 of 32

Page 22 of 32

Page 23 of 32

Page 24 of 32

Page 25 of 32

Page 26 of 32

Page 27 of 32

Page 28 of 32

Bibliography

Kapoor, R.N.; Martin, J.J. "Thermodynamic Properties of Chlorine" Engineering Research Institute, University of Michigan, Ann Arbor, Michigan (1957).

Kirkbride, F.W. in Mellow, J.W.: "Inorganic and Theoretical Chemistry," Vol. II, Suppl. I, Sect. XIII. John Wiley & Sons Inc., New York (1956).

Laubusch, E.J. in "Chlorine, Its Manufacture, Properties and Uses," Ch. 3 (Ed.: Sconce, J.S.) ACS Monograph Series No. 154 Reinhold Publishing Corp., New York (1962). McBride, B.J.; Heimel, S.; Ehlers, J.G.; Gordon, S. "Thermodynamic Properties to 6000°K for 210 Substances Involving the First 18 Elements" NASA SP-3001. Lewis Research Center, Cleveland, Ohio (1963).

McGlashan, M.L. "IUPAC Manual of Symbols and Terminology for Physiochemical Quantities and Units" Pure Appl. Chem 21, 1 (1970).

Mussini, T.; Faita, G. in "Encyclopedia of Electrochemistry of the Elements," Vol. 1, Ch. 1 (Ed.: Bard, A.J.) Marcel Dekker, Inc., New York (1973). Setty, H.S.N.; Smith, J.D.; Yaws, C.L. Chem. Eng., 81 (12) 70 (1974).

Stull, D.R.; Prophet, H. "JANAF Thermochemical Tables" 2nd Ed. NSRDS – NBS37 National Bureau of Standards, Washington, D.C., (1971).

Svehla, R.A. "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures" NASA Technical Report R-132 Lewis Research Center, Cleveland, Ohio (1962).

Ziegler, L. Chem. Ing. Tech., 22, 229 (1950). The Chlorine Institute (www.chlorineinstitute.org) provides additional chlorine safety and handling information and training materials. The applicable Chlorine Institute pamphlets should be thoroughly reviewed prior to handling or using chlorine. For additional information on chlorine and chlorine products contact OxyChem's Technical service group at 1-800-733-1165, option 2

Visit the Chlorine Tree at www. Chlorinetree.org to see how chlorine and its by-products touch nearly every facet of our everyday lives.

ОХҮСНЕМ

5005 LBJ Freeway Suite 2200 Dallas, TX 75380 1-800-733-1165 option 2

Chlorine Handbook January, 2012